LFM2-8B-A1B-GGUF

16.9K
37
8.0B
9 languages
BF16
by
unsloth
Language Model
OTHER
8B params
Fair
17K downloads
Community-tested
Edge AI:
Mobile
Laptop
Server
18GB+ RAM
Mobile
Laptop
Server
Quick Summary

> [!NOTE] > Includes Unsloth chat template fixes! For `llama.cpp`, use `--jinja` > Unsloth Dynamic 2.0 achieves superior accuracy & outperforms other leading q...

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
8GB+ RAM

Code Examples

🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
🏃 How to run LFM2bash
pip install git+https://github.com/huggingface/transformers.git@0c9a72e4576fe4c84077f066e585129c97bfd4e6
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
2. vLLMbashvllm
git clone https://github.com/vllm-project/vllm.git
cd vllm
pip install -e . -v
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
pythonvllm
from vllm import LLM, SamplingParams

prompts = [
    [
        {
            "content": "What is C. elegans?",
            "role": "user",
        },
    ],
    [
        {
            "content": "Say hi in JSON format",
            "role": "user",
        },
    ],
    [
        {
            "content": "Define AI in Spanish",
            "role": "user",
        },
    ],
]

sampling_params = SamplingParams(
    temperature=0.3,
    min_p=0.15,
    repetition_penalty=1.05,
    max_tokens=30
)

llm = LLM(model="LiquidAI/LFM2-8B-A1B", dtype="bfloat16")

outputs = llm.chat(prompts, sampling_params)

for i, output in enumerate(outputs):
    prompt = prompts[i][0]["content"]
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.