Kimi-K2-Thinking-GGUF

21.4K
74
2.0B
BF16
by
unsloth
Other
OTHER
2B params
Fair
21K downloads
Community-tested
Edge AI:
Mobile
Laptop
Server
5GB+ RAM
Mobile
Laptop
Server
Quick Summary

Nov 8: We collabed with the Kimi team on a system prompt fix.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
2GB+ RAM

Code Examples

Your tool implementationpython
# Your tool implementation
def get_weather(city: str) -> dict:
    return {"weather": "Sunny"}
# Tool schema definition
tools = [{
    "type": "function",
    "function": {
        "name": "get_weather",
        "description": "Retrieve current weather information. Call this when the user asks about the weather.",
        "parameters": {
            "type": "object",
            "required": ["city"],
            "properties": {
                "city": {
                    "type": "string",
                    "description": "Name of the city"
                }
            }
        }
    }
}]
# Map tool names to their implementations
tool_map = {
    "get_weather": get_weather
}
def tool_call_with_client(client: OpenAI, model_name: str):
    messages = [
        {"role": "system", "content": "You are Kimi, an AI assistant created by Moonshot AI."},
        {"role": "user", "content": "What's the weather like in Beijing today? Use the tool to check."}
    ]
    finish_reason = None
    while finish_reason is None or finish_reason == "tool_calls":
        completion = client.chat.completions.create(
            model=model_name,
            messages=messages,
            temperature=1.0,
            tools=tools,          # tool list defined above
            tool_choice="auto"
        )
        choice = completion.choices[0]
        finish_reason = choice.finish_reason
        if finish_reason == "tool_calls":
            messages.append(choice.message)
            for tool_call in choice.message.tool_calls:
                tool_call_name = tool_call.function.name
                tool_call_arguments = json.loads(tool_call.function.arguments)
                tool_function = tool_map[tool_call_name]
                tool_result = tool_function(**tool_call_arguments)
                print("tool_result:", tool_result)
                messages.append({
                    "role": "tool",
                    "tool_call_id": tool_call.id,
                    "name": tool_call_name,
                    "content": json.dumps(tool_result)
                })
    print("-" * 100)
    print(choice.message.content)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.