JanusCoder-8B-GGUF

23.9K
2
8.0B
BF16
license:apache-2.0
by
unsloth
Image Model
OTHER
8B params
Fair
24K downloads
Community-tested
Edge AI:
Mobile
Laptop
Server
18GB+ RAM
Mobile
Laptop
Server
Quick Summary

> [!NOTE] > Includes Unsloth chat template fixes! For `llama.cpp`, use `--jinja` > Unsloth Dynamic 2.0 achieves superior accuracy & outperforms other leading q...

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
8GB+ RAM

Code Examples

Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Quick Startpythontransformers
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "internlm/JanusCoder-8B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto")

messages = [
    {
        "role": "user",
        "content": [
            {"type": "text", "text": "Create a line plot that illustrates function y=x."},
        ],
    }
]

inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)

generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}
Citationbibtex
@article{sun2025januscoder,
  title={JanusCoder: Towards a Foundational Visual-Programmatic Interface for Code Intelligence},
  author={Sun, Qiushi and Gong, Jingyang and Liu, Yang and Chen, Qiaosheng and Li, Lei and Chen, Kai and Guo, Qipeng and Kao, Ben and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.23538},
  year={2025}
}

@article{sun2024survey,
  title={A survey of neural code intelligence: Paradigms, advances and beyond},
  author={Sun, Qiushi and Chen, Zhirui and Xu, Fangzhi and Cheng, Kanzhi and Ma, Chang and Yin, Zhangyue and Wang, Jianing and Han, Chengcheng and Zhu, Renyu and Yuan, Shuai and others},
  journal={arXiv preprint arXiv:2403.14734},
  year={2024}
}

@article{chen2025interactscience,
  title={InteractScience: Programmatic and Visually-Grounded Evaluation of Interactive Scientific Demonstration Code Generation},
  author={Chen, Qiaosheng and Liu, Yang and Li, Lei and Chen, Kai and Guo, Qipeng and Cheng, Gong and Yuan, Fei},
  journal={arXiv preprint arXiv:2510.09724},
  year={2025}
}

@article{sun2025codeevo,
  title={CodeEvo: Interaction-Driven Synthesis of Code-centric Data through Hybrid and Iterative Feedback},
  author={Sun, Qiushi and Gong, Jinyang and Li, Lei and Guo, Qipeng and Yuan, Fei},
  journal={arXiv preprint arXiv:2507.22080},
  year={2025}
}

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.