stablelm-2-12b-chat
167
87
12.0B
1 language
—
by
stabilityai
Language Model
OTHER
12B params
New
167 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
27GB+ RAM
Mobile
Laptop
Server
Quick Summary
`Stable LM 2 12B Chat` is a 12 billion parameter instruction tuned language model trained on a mix of publicly available datasets and synthetic datasets, utiliz...
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
12GB+ RAM
Training Data Analysis
🟡 Average (5.3/10)
Researched training datasets used by stablelm-2-12b-chat with quality assessment
Specialized For
code
general
science
multilingual
Training Datasets (2)
the pile
🟢 8/10
code
general
science
multilingual
Key Strengths
- •Deliberate Diversity: Explicitly curated to include diverse content types (academia, code, Q&A, book...
- •Documented Quality: Each component dataset is thoroughly documented with rationale for inclusion, en...
- •Epoch Weighting: Component datasets receive different training epochs based on perceived quality, al...
common crawl
🔴 2.5/10
general
science
Key Strengths
- •Scale and Accessibility: At 9.5+ petabytes, Common Crawl provides unprecedented scale for training d...
- •Diversity: The dataset captures billions of web pages across multiple domains and content types, ena...
- •Comprehensive Coverage: Despite limitations, Common Crawl attempts to represent the broader web acro...
Considerations
- •Biased Coverage: The crawling process prioritizes frequently linked domains, making content from dig...
- •Large-Scale Problematic Content: Contains significant amounts of hate speech, pornography, violent c...
Explore our comprehensive training dataset analysis
View All DatasetsCode Examples
pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)pythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
device_map="auto",
)
prompt = [{'role': 'user', 'content': 'Implement snake game using pygame'}]
inputs = tokenizer.apply_chat_template(
prompt,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=100,
temperature=0.7,
do_sample=True,
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=False)
print(output)python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""python
system_prompt = """\
You are a helpful assistant with access to the following functions. You must use them if required -\n
[
{
"type": "function",
"function": {
"name": "TextToImage",
"description": "This function is able to create, draw, or illustrate an image from a text prompt.",
"parameters": {
"type": "object",
"properties": {
"prompt": {
"type": "string",
"description": "The description of image that the user wants to create."
}
},
"required": [
"prompt"
]
}
}
}
]
"""
messages = [
{'role': 'system', 'content': system_prompt},
{'role': "user", 'content': "Please, generate a picture of the Eiffel Tower at night!"}
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors='pt'
)
tokens = model.generate(
inputs.to(model.device),
max_new_tokens=1024,
temperature=0.5,
do_sample=True
)
output = tokenizer.decode(tokens[:, inputs.shape[-1]:][0], skip_special_tokens=True)
print(output)
"""
[
{
"name": "TextToImage",
"arguments": {
"prompt": "Eiffel Tower at night."
}
}
]
"""Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.