opensearch-neural-sparse-encoding-doc-v2-distill
2.2M
19
512
Small context
1 language
license:apache-2.0
by
opensearch-project
Embedding Model
OTHER
High
2.2M downloads
Battle-tested
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary
--- language: en license: apache-2.
Code Examples
Usage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)bash
pip install -U sentence-transformersUsage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Usage (Sentence Transformers)python
from sentence_transformers.sparse_encoder import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("opensearch-project/opensearch-neural-sparse-encoding-doc-v2-distill")
query = "What's the weather in ny now?"
document = "Currently New York is rainy."
query_embed = model.encode_query(query)
document_embed = model.encode_document(document)
sim = model.similarity(query_embed, document_embed)
print(f"Similarity: {sim}")
# Similarity: tensor([[17.5307]])
decoded_query = model.decode(query_embed)
decoded_document = model.decode(document_embed)
for i in range(len(decoded_query)):
query_token, query_score = decoded_query[i]
doc_score = next((score for token, score in decoded_document if token == query_token), 0)
if doc_score != 0:
print(f"Token: {query_token}, Query score: {query_score:.4f}, Document score: {doc_score:.4f}")
# Similarity: tensor([[17.5307]], device='cuda:0')
# Token: ny, Query score: 5.7729, Document score: 1.4109
# Token: weather, Query score: 4.5684, Document score: 1.4673
# Token: now, Query score: 3.5895, Document score: 0.7473Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.