nemo-nano-codec-22khz-0.6kbps-12.5fps
3.5K
11
—
by
nvidia
Embedding Model
OTHER
New
3K downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary
AI model with specialized capabilities.
Code Examples
load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)load audio codec modeltextpytorch
import librosa
import torch
import soundfile as sf
from nemo.collections.tts.models import AudioCodecModel
path_to_input_audio = ??? # path of the input audio
path_to_output_audio = ??? # path of the reconstructed output audio
# load audio codec model
nemo_codec_model = AudioCodecModel.from_pretrained("nvidia/nemo-nano-codec-22khz-0.6kbps-12.5fps").eval()
# get discrete tokens from audio
audio, _ = librosa.load(path_to_input_audio, sr=nemo_codec_model.sample_rate)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
audio_tensor = torch.from_numpy(audio).unsqueeze(dim=0).to(device)
audio_len = torch.tensor([audio_tensor[0].shape[0]]).to(device)
encoded_tokens, encoded_len = nemo_codec_model.encode(audio=audio_tensor, audio_len=audio_len)
# Reconstruct audio from tokens
reconstructed_audio, _ = nemo_codec_model.decode(tokens=encoded_tokens, tokens_len=encoded_len)
# save reconstructed audio
output_audio = reconstructed_audio.cpu().numpy().squeeze()
sf.write(path_to_output_audio, output_audio, nemo_codec_model.sample_rate)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.