mit-b0

76.8K
37
1 language
by
nvidia
Image Model
OTHER
Fair
77K downloads
Community-tested
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary

SegFormer encoder fine-tuned on Imagenet-1k.

Code Examples

How to usepythontransformers
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
How to usepythontransformers
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
How to usepythontransformers
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
How to usepythontransformers
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
How to usepythontransformers
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
How to usepythontransformers
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
How to usepythontransformers
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
How to usepythontransformers
from transformers import SegformerImageProcessor, SegformerForImageClassification
from PIL import Image
import requests

url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)

image_processor = SegformerImageProcessor.from_pretrained("nvidia/mit-b0")
model = SegformerForImageClassification.from_pretrained("nvidia/mit-b0")

inputs = image_processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 1000 ImageNet classes
predicted_class_idx = logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.