Qwen3 Nemotron 32B RLBFF

524
25
32.0B
1 language
by
nvidia
Language Model
OTHER
32B params
New
524 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
72GB+ RAM
Mobile
Laptop
Server
Quick Summary

AI model with specialized capabilities.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
30GB+ RAM

Code Examples

pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "How many r are there in strawberry?"

messages = [{'role': "user", "content": prompt}]

tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)

response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)

response = tokenizer.decode(response_token_ids.sequences[0].tolist())

print(response)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.