Qwen3 Nemotron 32B RLBFF
524
25
32.0B
1 language
—
by
nvidia
Language Model
OTHER
32B params
New
524 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
72GB+ RAM
Mobile
Laptop
Server
Quick Summary
AI model with specialized capabilities.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
30GB+ RAM
Code Examples
pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/Qwen3-Nemotron-32B-RLBFF"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "How many r are there in strawberry?"
messages = [{'role': "user", "content": prompt}]
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(), max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
response = tokenizer.decode(response_token_ids.sequences[0].tolist())
print(response)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.