Qwen3 Nemotron 32B GenRM Principle

75
3
32.0B
1 language
by
nvidia
Language Model
OTHER
32B params
New
75 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
72GB+ RAM
Mobile
Laptop
Server
Quick Summary

Qwen3-Nemotron-32B-GenRM-Principle is a large language model that leverages Qwen3-32B as the foundation and is fine-tuned to predict the extent to which LLM-gen...

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
30GB+ RAM

Code Examples

pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Qwen3-Nemotron-32B-GenRM-Principle"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"
principle = "correctness"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}, {'role': "principle", "content": principle}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=16000, return_dict_in_generate=True, output_scores=True)
    response = tokenizer.decode(response_token_ids.sequences[0].tolist())
    score_max = torch.max(response_token_ids.scores[-2][0]).item() # normalize max score to zero to match vLLM logprobs and clip others to -50 if they return -inf for too small of a value. The same should be done if the required tokens is not returned by vLLM's top k logprobs.
    score_no = max(response_token_ids.scores[-2][0][2308].item() - score_max, -50)  # token for " No"
    score_yes = max(response_token_ids.scores[-2][0][7414].item() - score_max, -50) # token for " Yes"
    reward = score_yes-score_no
    print(response)
    print(reward)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.