Qwen-3-Nemotron-32B-Reward

71
16
32.0B
1 language
by
nvidia
Language Model
OTHER
32B params
New
71 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
72GB+ RAM
Mobile
Laptop
Server
Quick Summary

AI model with specialized capabilities.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
30GB+ RAM

Code Examples

Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model_name = "nvidia/Qwen-3-Nemotron-32B-Reward"

model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt + " /nothink"}, {'role': "assistant", "content": "<think>\n\n</think>\n\n" + response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    reward = model(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda()).logits[0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 8.0234375
# reward for bad_response = -7.9765625

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.