Nemotron-H-8B-Base-8K
15.0K
52
8.0B
10 languages
—
by
nvidia
Language Model
OTHER
8B params
Fair
15K downloads
Community-tested
Edge AI:
Mobile
Laptop
Server
18GB+ RAM
Mobile
Laptop
Server
Quick Summary
NVIDIA Nemotron-H-8B-Base-8K is a large language model (LLM) developed by NVIDIA that is designed as a completion model for a given piece of text.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
8GB+ RAM
Code Examples
Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Model Versionpythontransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("nvidia/Nemotron-H-8B-Base-8K", torch_dtype=torch.bfloat16, trust_remote_code=True).cuda()
prompt = "When was NVIDIA founded?"
outputs = model.generate(**tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to(model.device))
print(tokenizer.decode(outputs[0]))Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.