Nemotron-H-47B-Reasoning-128K

981
18
47.0B
1 language
by
nvidia
Language Model
OTHER
47B params
New
981 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
106GB+ RAM
Mobile
Laptop
Server
Quick Summary

AI model with specialized capabilities.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
44GB+ RAM

Training Data Analysis

🔵 Good (6.0/10)

Researched training datasets used by Nemotron-H-47B-Reasoning-128K with quality assessment

Specialized For

general
multilingual

Training Datasets (1)

c4
🔵 6/10
general
multilingual
Key Strengths
  • Scale and Accessibility: 750GB of publicly available, filtered text
  • Systematic Filtering: Documented heuristics enable reproducibility
  • Language Diversity: Despite English-only, captures diverse writing styles
Considerations
  • English-Only: Limits multilingual applications
  • Filtering Limitations: Offensive content and low-quality text remain despite filtering

Explore our comprehensive training dataset analysis

View All Datasets

Code Examples

**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
**Use it with Transformers**texttransformers
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nvidia/Nemotron-H-47B-Reasoning-128K")
model = AutoModelForCausalLM.from_pretrained(
    "nvidia/Nemotron-H-47B-Reasoning-128K",
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto"
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)
texttransformers
from tensorrt_llm import SamplingParams
from tensorrt_llm._torch import LLM
from tensorrt_llm._torch.pyexecutor.config import PyTorchConfig
from tensorrt_llm.llmapi import KvCacheConfig
from transformers import AutoTokenizer
pytorch_config = PyTorchConfig(
    disable_overlap_scheduler=True, enable_trtllm_decoder=True
)
kv_cache_config = KvCacheConfig(
    enable_block_reuse=False,
)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.