NV-EmbedCode-7b-v1

155
19
7.0B
by
nvidia
Embedding Model
OTHER
7B params
New
155 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
16GB+ RAM
Mobile
Laptop
Server
Quick Summary

AI model with specialized capabilities.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
7GB+ RAM

Code Examples

Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Usagebash
pip install transformers==4.37.2 sentence_transformers
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]
Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util

# Task instructions for different retrieval scenarios
task_instructions = {
    "general": "Retrieve code or text based on user query",
    "originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
    "llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}

# Example queries and corpus
queries = [
    "Function to calculate the sum of two numbers",
    "Recursive function to calculate the factorial of a number",
]

docs = [
    "def add(a, b):\n    return a + b",
    "def factorial(n):\n    return 1 if n==0 else n*factorial(n-1)",
]

# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "

# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)

# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)

# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.