NV-EmbedCode-7b-v1
155
19
7.0B
—
by
nvidia
Embedding Model
OTHER
7B params
New
155 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
16GB+ RAM
Mobile
Laptop
Server
Quick Summary
AI model with specialized capabilities.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
7GB+ RAM
Code Examples
Usagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersUsagebash
pip install transformers==4.37.2 sentence_transformersDirect Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Direct Usage (Sentence Transformers)python
from sentence_transformers import SentenceTransformer, util
# Task instructions for different retrieval scenarios
task_instructions = {
"general": "Retrieve code or text based on user query",
"originalbug": "Given a bug description, retrieve codes that need to be edited to resolve it.",
"llmsummary": "Given a summary of bug description generated by an LLM, retrieve codes that need to be edited to resolve it."
}
# Example queries and corpus
queries = [
"Function to calculate the sum of two numbers",
"Recursive function to calculate the factorial of a number",
]
docs = [
"def add(a, b):\n return a + b",
"def factorial(n):\n return 1 if n==0 else n*factorial(n-1)",
]
# Prepare prompt prefix for corpus
query_prefix = f"Instruct: {task_instructions['general']}\nQuery: "
# Load model
model = SentenceTransformer('nvidia/NV-EmbedCode-7b-v1', trust_remote_code=True)
# Encode queries and documents
query_emb = model.encode(queries, prompt=query_prefix, normalize_embeddings=True)
doc_emb = model.encode(docs, normalize_embeddings=True)
# Compute similarity scores
scores = util.cos_sim(query_emb, doc_emb) * 100
print(scores.tolist())
# [[68.55826568603516, 24.0609130859375], [28.60508918762207, 76.94281005859375]]Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.