NFT-7B
81
2
7.0B
1 language
—
by
nvidia
Language Model
OTHER
7B params
New
81 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
16GB+ RAM
Mobile
Laptop
Server
Quick Summary
AI model with specialized capabilities.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
7GB+ RAM
Code Examples
text
L_NFT(θ) = r[-log(π_θ⁺(a|q) / π(a|q))] + (1-r)[-log((1 - r_q * (π_θ⁺(a|q) / π(a|q))) / (1-r_q))]text
L_NFT(θ) = r[-log(π_θ⁺(a|q) / π(a|q))] + (1-r)[-log((1 - r_q * (π_θ⁺(a|q) / π(a|q))) / (1-r_q))]text
L_NFT(θ) = r[-log(π_θ⁺(a|q) / π(a|q))] + (1-r)[-log((1 - r_q * (π_θ⁺(a|q) / π(a|q))) / (1-r_q))]text
L_NFT(θ) = r[-log(π_θ⁺(a|q) / π(a|q))] + (1-r)[-log((1 - r_q * (π_θ⁺(a|q) / π(a|q))) / (1-r_q))]Example math problempythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/NFT-7B"
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Example math problem
problem = "Find the value of $x$ that satisfies the equation $\\sqrt{x+7} = x-5$."
# Format the prompt to encourage step-by-step reasoning
prompt = f"{problem}\nPlease reason step by step, and put your final answer within \\boxed{{}}."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
# Generate response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0 # Use 0 for deterministic output
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)Example math problempythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/NFT-7B"
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Example math problem
problem = "Find the value of $x$ that satisfies the equation $\\sqrt{x+7} = x-5$."
# Format the prompt to encourage step-by-step reasoning
prompt = f"{problem}\nPlease reason step by step, and put your final answer within \\boxed{{}}."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
# Generate response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0 # Use 0 for deterministic output
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)Example math problempythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/NFT-7B"
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Example math problem
problem = "Find the value of $x$ that satisfies the equation $\\sqrt{x+7} = x-5$."
# Format the prompt to encourage step-by-step reasoning
prompt = f"{problem}\nPlease reason step by step, and put your final answer within \\boxed{{}}."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
# Generate response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0 # Use 0 for deterministic output
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)Example math problempythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "nvidia/NFT-7B"
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Example math problem
problem = "Find the value of $x$ that satisfies the equation $\\sqrt{x+7} = x-5$."
# Format the prompt to encourage step-by-step reasoning
prompt = f"{problem}\nPlease reason step by step, and put your final answer within \\boxed{{}}."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
# Generate response
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512,
temperature=0 # Use 0 for deterministic output
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.