Llama-3.3-Nemotron-70B-Reward-Multilingual

172
10
14 languages
llama
by
nvidia
Language Model
OTHER
70B params
New
172 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
157GB+ RAM
Mobile
Laptop
Server
Quick Summary

AI model with specialized capabilities.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
66GB+ RAM

Training Data Analysis

🟡 Average (4.8/10)

Researched training datasets used by Llama-3.3-Nemotron-70B-Reward-Multilingual with quality assessment

Specialized For

general
science
multilingual
reasoning

Training Datasets (4)

common crawl
🔴 2.5/10
general
science
Key Strengths
  • Scale and Accessibility: At 9.5+ petabytes, Common Crawl provides unprecedented scale for training d...
  • Diversity: The dataset captures billions of web pages across multiple domains and content types, ena...
  • Comprehensive Coverage: Despite limitations, Common Crawl attempts to represent the broader web acro...
Considerations
  • Biased Coverage: The crawling process prioritizes frequently linked domains, making content from dig...
  • Large-Scale Problematic Content: Contains significant amounts of hate speech, pornography, violent c...
c4
🔵 6/10
general
multilingual
Key Strengths
  • Scale and Accessibility: 750GB of publicly available, filtered text
  • Systematic Filtering: Documented heuristics enable reproducibility
  • Language Diversity: Despite English-only, captures diverse writing styles
Considerations
  • English-Only: Limits multilingual applications
  • Filtering Limitations: Offensive content and low-quality text remain despite filtering
wikipedia
🟡 5/10
science
multilingual
Key Strengths
  • High-Quality Content: Wikipedia articles are subject to community review, fact-checking, and citatio...
  • Multilingual Coverage: Available in 300+ languages, enabling training of models that understand and ...
  • Structured Knowledge: Articles follow consistent formatting with clear sections, allowing models to ...
Considerations
  • Language Inequality: Low-resource language editions have significantly lower quality, fewer articles...
  • Biased Coverage: Reflects biases in contributor demographics; topics related to Western culture and ...
arxiv
🟡 5.5/10
science
reasoning
Key Strengths
  • Scientific Authority: Peer-reviewed content from established repository
  • Domain-Specific: Specialized vocabulary and concepts
  • Mathematical Content: Includes complex equations and notation
Considerations
  • Specialized: Primarily technical and mathematical content
  • English-Heavy: Predominantly English-language papers

Explore our comprehensive training dataset analysis

View All Datasets

Code Examples

Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125
Example quality - note that higher scores means higher quality, and scores can be negative.pythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "nvidia/Llama-3.3-Nemotron-70B-Reward-Multilingual"

model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "What is 1+1?"
good_response = "1+1=2"
bad_response = "1+1=3"

for response in [good_response, bad_response]:
    messages = [{'role': "user", "content": prompt}, {'role': "assistant", "content": response}]
    tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=False, return_tensors="pt", return_dict=True)
    response_token_ids = model.generate(tokenized_message['input_ids'].cuda(),attention_mask=tokenized_message['attention_mask'].cuda(),  max_new_tokens=1, return_dict_in_generate=True, output_scores=True)
    reward = response_token_ids['scores'][0][0][0].item()
    print(reward)

# Example quality - note that higher scores means higher quality, and scores can be negative.

# reward for good_response = 6.46875
# reward for bad_response = -1.8828125

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.