Cosmos-Reason1-7B

413.4K
188
128K
Long context
7.0B
1 language
by
nvidia
Image Model
OTHER
7B params
Good
413K downloads
Production-ready
Edge AI:
Mobile
Laptop
Server
16GB+ RAM
Mobile
Laptop
Server
Quick Summary

--- license: other license_name: nvidia-open-model-license license_link: >- https://www.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
7GB+ RAM

Code Examples

Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)
Inference:pythontransformers
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info

# You can also replace the MODEL_PATH by a safetensors folder path mentioned above
MODEL_PATH = "nvidia/Cosmos-Reason1-7B"

llm = LLM(
    model=MODEL_PATH,
    limit_mm_per_prompt={"image": 10, "video": 10},
)

sampling_params = SamplingParams(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.05,
    max_tokens=4096,
)

video_messages = [
    {"role": "system", "content": "You are a helpful assistant. Answer the question in the following format: <think>\nyour reasoning\n</think>\n\n<answer>\nyour answer\n</answer>."},
    {"role": "user", "content": [
            {"type": "text", "text": (
                    "Is it safe to turn right?"
                )
            },
            {
                "type": "video", 
                "video": "file:///path/to/your/video.mp4",
                "fps": 4,
            }
        ]
    },
]

# Here we use video messages as a demonstration
messages = video_messages

processor = AutoProcessor.from_pretrained(MODEL_PATH)
prompt = processor.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
image_inputs, video_inputs, video_kwargs = process_vision_info(messages, return_video_kwargs=True)

mm_data = {}
if image_inputs is not None:
    mm_data["image"] = image_inputs
if video_inputs is not None:
    mm_data["video"] = video_inputs

llm_inputs = {
    "prompt": prompt,
    "multi_modal_data": mm_data,

    # FPS will be returned in video_kwargs
    "mm_processor_kwargs": video_kwargs,
}

outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
generated_text = outputs[0].outputs[0].text

print(generated_text)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.