nomicai-modernbert-embed-base-4bit
295
4.0B
2 languages
license:apache-2.0
by
mlx-community
Embedding Model
OTHER
4B params
New
295 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
9GB+ RAM
Mobile
Laptop
Server
Quick Summary
The Model mlx-community/nomicai-modernbert-embed-base-4bit was converted to MLX format from nomic-ai/modernbert-embed-base using mlx-lm version 0.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
4GB+ RAM
Code Examples
Use with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxbash
pip install mlx-embeddingsUse with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Use with mlxpython
from mlx_embeddings import load, generate
import mlx.core as mx
model, tokenizer = load("mlx-community/nomicai-modernbert-embed-base-4bit")
# For text embeddings
output = generate(model, processor, texts=["I like grapes", "I like fruits"])
embeddings = output.text_embeds # Normalized embeddings
# Compute dot product between normalized embeddings
similarity_matrix = mx.matmul(embeddings, embeddings.T)
print("Similarity matrix between texts:")
print(similarity_matrix)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.