Qwen2.5-Coder-32B-Instruct-4bit
152
10
license:apache-2.0
by
mlx-community
Language Model
OTHER
32B params
New
152 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
72GB+ RAM
Mobile
Laptop
Server
Quick Summary
AI model with specialized capabilities.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
30GB+ RAM
Code Examples
Use with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Qwen2.5-Coder-32B-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.