LFM2-700M-8bit

318
1
8.0B
9 languages
by
mlx-community
Language Model
OTHER
8B params
New
318 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
18GB+ RAM
Mobile
Laptop
Server
Quick Summary

This model mlx-community/LFM2-700M-8bit was converted to MLX format from LiquidAI/LFM2-700M using mlx-lm version 0.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
8GB+ RAM

Training Data Analysis

🔵 Good (6.0/10)

Researched training datasets used by LFM2-700M-8bit with quality assessment

Specialized For

general
multilingual

Training Datasets (1)

c4
🔵 6/10
general
multilingual
Key Strengths
  • Scale and Accessibility: 750GB of publicly available, filtered text
  • Systematic Filtering: Documented heuristics enable reproducibility
  • Language Diversity: Despite English-only, captures diverse writing styles
Considerations
  • English-Only: Limits multilingual applications
  • Filtering Limitations: Offensive content and low-quality text remain despite filtering

Explore our comprehensive training dataset analysis

View All Datasets

Code Examples

Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxbash
pip install mlx-lm
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
Use with mlxpython
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/LFM2-700M-8bit")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.