LFM2-1.2B-4bit
947
2
1.2B
9 languages
—
by
mlx-community
Language Model
OTHER
1.2B params
New
947 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
3GB+ RAM
Mobile
Laptop
Server
Quick Summary
This model mlx-community/LFM2-1.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
2GB+ RAM
Code Examples
Use with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/LFM2-1.2B-4bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.