Apertus-8B-Instruct-2509-bf16
255
4
1 language
license:apache-2.0
by
mlx-community
Language Model
OTHER
8B params
New
255 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
18GB+ RAM
Mobile
Laptop
Server
Quick Summary
This model mlx-community/Apertus-8B-Instruct-2509-bf16 was converted to MLX format from swiss-ai/Apertus-8B-Instruct-2509 using mlx-lm version 0.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
8GB+ RAM
Code Examples
Use with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxbash
pip install mlx-lmUse with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Use with mlxpython
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Apertus-8B-Instruct-2509-bf16")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.