infoxlm-large

113.8K
13
514
Small context
558M
by
microsoft
Language Model
OTHER
Good
114K downloads
Production-ready
Edge AI:
Mobile
Laptop
Server
2GB+ RAM
Mobile
Laptop
Server
Quick Summary

**InfoXLM** (NAACL 2021, [paper](https://arxiv.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
1GB+ RAM

Code Examples

text
05b95b7d977450b364f8ea3269391953  config.json
c19438359fed6d36b0c1bbb107929579  pytorch_model.bin
bf25eb5120ad92ef5c7d8596b5dc4046  sentencepiece.bpe.model
eedbd60a7268b9fc45981b849664f747  tokenizer.json
text
05b95b7d977450b364f8ea3269391953  config.json
c19438359fed6d36b0c1bbb107929579  pytorch_model.bin
bf25eb5120ad92ef5c7d8596b5dc4046  sentencepiece.bpe.model
eedbd60a7268b9fc45981b849664f747  tokenizer.json
text
05b95b7d977450b364f8ea3269391953  config.json
c19438359fed6d36b0c1bbb107929579  pytorch_model.bin
bf25eb5120ad92ef5c7d8596b5dc4046  sentencepiece.bpe.model
eedbd60a7268b9fc45981b849664f747  tokenizer.json
text
05b95b7d977450b364f8ea3269391953  config.json
c19438359fed6d36b0c1bbb107929579  pytorch_model.bin
bf25eb5120ad92ef5c7d8596b5dc4046  sentencepiece.bpe.model
eedbd60a7268b9fc45981b849664f747  tokenizer.json
text
05b95b7d977450b364f8ea3269391953  config.json
c19438359fed6d36b0c1bbb107929579  pytorch_model.bin
bf25eb5120ad92ef5c7d8596b5dc4046  sentencepiece.bpe.model
eedbd60a7268b9fc45981b849664f747  tokenizer.json
text
05b95b7d977450b364f8ea3269391953  config.json
c19438359fed6d36b0c1bbb107929579  pytorch_model.bin
bf25eb5120ad92ef5c7d8596b5dc4046  sentencepiece.bpe.model
eedbd60a7268b9fc45981b849664f747  tokenizer.json
text
@inproceedings{chi-etal-2021-infoxlm,
  title = "{I}nfo{XLM}: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training",
  author={Chi, Zewen and Dong, Li and Wei, Furu and Yang, Nan and Singhal, Saksham and Wang, Wenhui and Song, Xia and Mao, Xian-Ling and Huang, Heyan and Zhou, Ming},
  booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
  month = jun,
  year = "2021",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://aclanthology.org/2021.naacl-main.280",
  doi = "10.18653/v1/2021.naacl-main.280",
  pages = "3576--3588",}
text
@inproceedings{chi-etal-2021-infoxlm,
  title = "{I}nfo{XLM}: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training",
  author={Chi, Zewen and Dong, Li and Wei, Furu and Yang, Nan and Singhal, Saksham and Wang, Wenhui and Song, Xia and Mao, Xian-Ling and Huang, Heyan and Zhou, Ming},
  booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
  month = jun,
  year = "2021",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://aclanthology.org/2021.naacl-main.280",
  doi = "10.18653/v1/2021.naacl-main.280",
  pages = "3576--3588",}
text
@inproceedings{chi-etal-2021-infoxlm,
  title = "{I}nfo{XLM}: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training",
  author={Chi, Zewen and Dong, Li and Wei, Furu and Yang, Nan and Singhal, Saksham and Wang, Wenhui and Song, Xia and Mao, Xian-Ling and Huang, Heyan and Zhou, Ming},
  booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
  month = jun,
  year = "2021",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://aclanthology.org/2021.naacl-main.280",
  doi = "10.18653/v1/2021.naacl-main.280",
  pages = "3576--3588",}
text
@inproceedings{chi-etal-2021-infoxlm,
  title = "{I}nfo{XLM}: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training",
  author={Chi, Zewen and Dong, Li and Wei, Furu and Yang, Nan and Singhal, Saksham and Wang, Wenhui and Song, Xia and Mao, Xian-Ling and Huang, Heyan and Zhou, Ming},
  booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
  month = jun,
  year = "2021",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://aclanthology.org/2021.naacl-main.280",
  doi = "10.18653/v1/2021.naacl-main.280",
  pages = "3576--3588",}
text
@inproceedings{chi-etal-2021-infoxlm,
  title = "{I}nfo{XLM}: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training",
  author={Chi, Zewen and Dong, Li and Wei, Furu and Yang, Nan and Singhal, Saksham and Wang, Wenhui and Song, Xia and Mao, Xian-Ling and Huang, Heyan and Zhou, Ming},
  booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
  month = jun,
  year = "2021",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://aclanthology.org/2021.naacl-main.280",
  doi = "10.18653/v1/2021.naacl-main.280",
  pages = "3576--3588",}
text
@inproceedings{chi-etal-2021-infoxlm,
  title = "{I}nfo{XLM}: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training",
  author={Chi, Zewen and Dong, Li and Wei, Furu and Yang, Nan and Singhal, Saksham and Wang, Wenhui and Song, Xia and Mao, Xian-Ling and Huang, Heyan and Zhou, Ming},
  booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
  month = jun,
  year = "2021",
  address = "Online",
  publisher = "Association for Computational Linguistics",
  url = "https://aclanthology.org/2021.naacl-main.280",
  doi = "10.18653/v1/2021.naacl-main.280",
  pages = "3576--3588",}

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.