TRELLIS.2-4B

443
license:mit
by
microsoft
Image Model
OTHER
4B params
New
0 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
9GB+ RAM
Mobile
Laptop
Server
Quick Summary

AI model with specialized capabilities.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
4GB+ RAM

Code Examples

Usagepythonpytorch
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"  # Can save GPU memory
import cv2
import imageio
from PIL import Image
import torch
from trellis2.pipelines import Trellis2ImageTo3DPipeline
from trellis2.utils import render_utils
from trellis2.renderers import EnvMap
import o_voxel

# 1. Setup Environment Map
envmap = EnvMap(torch.tensor(
    cv2.cvtColor(cv2.imread('assets/hdri/forest.exr', cv2.IMREAD_UNCHANGED), cv2.COLOR_BGR2RGB),
    dtype=torch.float32, device='cuda'
))

# 2. Load Pipeline
pipeline = Trellis2ImageTo3DPipeline.from_pretrained("microsoft/TRELLIS.2-4B")
pipeline.cuda()

# 3. Load Image & Run
image = Image.open("assets/example_image/T.png")
mesh = pipeline.run(image)[0]
mesh.simplify(16777216) # nvdiffrast limit

# 4. Render Video
video = render_utils.make_pbr_vis_frames(render_utils.render_video(mesh, envmap=envmap))
imageio.mimsave("sample.mp4", video, fps=15)

# 5. Export to GLB
glb = o_voxel.postprocess.to_glb(
    vertices            =   mesh.vertices,
    faces               =   mesh.faces,
    attr_volume         =   mesh.attrs,
    coords              =   mesh.coords,
    attr_layout         =   mesh.layout,
    voxel_size          =   mesh.voxel_size,
    aabb                =   [[-0.5, -0.5, -0.5], [0.5, 0.5, 0.5]],
    decimation_target   =   1000000,
    texture_size        =   4096,
    remesh              =   True,
    remesh_band         =   1,
    remesh_project      =   0,
    verbose             =   True
)
glb.export("sample.glb", extension_webp=True)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.