Phi-4-multimodal-instruct-onnx

68
78
2 languages
license:mit
by
microsoft
Audio Model
OTHER
New
68 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary

This is an ONNX version of the Phi-4 multimodal model that is quantized to int4 precision to accelerate inference with ONNX Runtime.

Training Data Analysis

🟡 Average (5.2/10)

Researched training datasets used by Phi-4-multimodal-instruct-onnx with quality assessment

Specialized For

code
general
science
multilingual

Training Datasets (3)

the pile
🟢 8/10
code
general
science
multilingual
Key Strengths
  • Deliberate Diversity: Explicitly curated to include diverse content types (academia, code, Q&A, book...
  • Documented Quality: Each component dataset is thoroughly documented with rationale for inclusion, en...
  • Epoch Weighting: Component datasets receive different training epochs based on perceived quality, al...
common crawl
🔴 2.5/10
general
science
Key Strengths
  • Scale and Accessibility: At 9.5+ petabytes, Common Crawl provides unprecedented scale for training d...
  • Diversity: The dataset captures billions of web pages across multiple domains and content types, ena...
  • Comprehensive Coverage: Despite limitations, Common Crawl attempts to represent the broader web acro...
Considerations
  • Biased Coverage: The crawling process prioritizes frequently linked domains, making content from dig...
  • Large-Scale Problematic Content: Contains significant amounts of hate speech, pornography, violent c...
wikipedia
🟡 5/10
science
multilingual
Key Strengths
  • High-Quality Content: Wikipedia articles are subject to community review, fact-checking, and citatio...
  • Multilingual Coverage: Available in 300+ languages, enabling training of models that understand and ...
  • Structured Knowledge: Articles follow consistent formatting with clear sections, allowing models to ...
Considerations
  • Language Inequality: Low-resource language editions have significantly lower quality, fewer articles...
  • Biased Coverage: Reflects biases in contributor demographics; topics related to Western culture and ...

Explore our comprehensive training dataset analysis

View All Datasets

Code Examples

Download the model directly using the Hugging Face CLIbashonnx
# Download the model directly using the Hugging Face CLI
huggingface-cli download microsoft/Phi-4-multimodal-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .

# Install the CPU package of ONNX Runtime GenAI
pip install --pre onnxruntime-genai

# Please adjust the model directory (-m) accordingly
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi4-mm.py -o phi4-mm.py
python phi4-mm.py -m cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4 -e cpu
Download the model directly using the Hugging Face CLIbashonnx
# Download the model directly using the Hugging Face CLI
huggingface-cli download microsoft/Phi-4-multimodal-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .

# Install the CPU package of ONNX Runtime GenAI
pip install --pre onnxruntime-genai

# Please adjust the model directory (-m) accordingly
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi4-mm.py -o phi4-mm.py
python phi4-mm.py -m cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4 -e cpu
Download the model directly using the Hugging Face CLIbashonnx
# Download the model directly using the Hugging Face CLI
huggingface-cli download microsoft/Phi-4-multimodal-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .

# Install the CPU package of ONNX Runtime GenAI
pip install --pre onnxruntime-genai

# Please adjust the model directory (-m) accordingly
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi4-mm.py -o phi4-mm.py
python phi4-mm.py -m cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4 -e cpu
Download the model directly using the Hugging Face CLIbashonnx
# Download the model directly using the Hugging Face CLI
huggingface-cli download microsoft/Phi-4-multimodal-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .

# Install the CPU package of ONNX Runtime GenAI
pip install --pre onnxruntime-genai

# Please adjust the model directory (-m) accordingly
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi4-mm.py -o phi4-mm.py
python phi4-mm.py -m cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4 -e cpu
Download the model directly using the Hugging Face CLIbashonnx
# Download the model directly using the Hugging Face CLI
huggingface-cli download microsoft/Phi-4-multimodal-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .

# Install the CPU package of ONNX Runtime GenAI
pip install --pre onnxruntime-genai

# Please adjust the model directory (-m) accordingly
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi4-mm.py -o phi4-mm.py
python phi4-mm.py -m cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4 -e cpu
Download the model directly using the Hugging Face CLIbashonnx
# Download the model directly using the Hugging Face CLI
huggingface-cli download microsoft/Phi-4-multimodal-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .

# Install the CPU package of ONNX Runtime GenAI
pip install --pre onnxruntime-genai

# Please adjust the model directory (-m) accordingly
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi4-mm.py -o phi4-mm.py
python phi4-mm.py -m cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4 -e cpu
Download the model directly using the Hugging Face CLIbashonnx
# Download the model directly using the Hugging Face CLI
huggingface-cli download microsoft/Phi-4-multimodal-instruct-onnx --include cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/* --local-dir .

# Install the CPU package of ONNX Runtime GenAI
pip install --pre onnxruntime-genai

# Please adjust the model directory (-m) accordingly
curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi4-mm.py -o phi4-mm.py
python phi4-mm.py -m cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4 -e cpu

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.