Dayhoff-3b-GR-HM-c
220
1
3.0B
—
by
microsoft
Other
OTHER
3B params
New
220 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
7GB+ RAM
Mobile
Laptop
Server
Quick Summary
AI model with specialized capabilities.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
3GB+ RAM
Code Examples
How to Get Started with the Modelpythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
set_seed(0)
torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained('microsoft/Dayhoff-3b-GR-HM-c')
tokenizer = AutoTokenizer.from_pretrained('microsoft/Dayhoff-3b-GR-HM-c', trust_remote_code=True)
inputs = tokenizer(tokenizer.bos_token, return_tensors="pt", return_token_type_ids=False)
outputs = model.generate(inputs['input_ids'],max_length=50,do_sample=True)
sequence = tokenizer.batch_decode(outputs,skip_special_tokens=True)
print(sequence)How to Get Started with the Modelpythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
set_seed(0)
torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained('microsoft/Dayhoff-3b-GR-HM-c')
tokenizer = AutoTokenizer.from_pretrained('microsoft/Dayhoff-3b-GR-HM-c', trust_remote_code=True)
inputs = tokenizer(tokenizer.bos_token, return_tensors="pt", return_token_type_ids=False)
outputs = model.generate(inputs['input_ids'],max_length=50,do_sample=True)
sequence = tokenizer.batch_decode(outputs,skip_special_tokens=True)
print(sequence)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.