CAD-Editor

14
FP32
license:mit
by
microsoft
Other
OTHER
New
0 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary

This model is the first framework for text-based CAD editing, enabling the automatic modification of existing CAD models based on natural language instructions.

Code Examples

1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
1. Locating Stagepython
CUDA_VISIBLE_DEVICES=<gpu_id> python finetune/llama_sample.py \
                                              --task_type mask \
                                              --model_path <model_path> \
                                              --data_path <data_path> \
                                              --out_path <out_path> \
                                              --num_samples <num_samples>
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}
Licensetext
@article{yuan2025cad,
  title={CAD-Editor: A Locate-then-Infill Framework with Automated Training Data Synthesis for Text-Based CAD Editing},
  author={Yuan, Yu and Sun, Shizhao and Liu, Qi and Bian, Jiang},
  journal={ICML},
  year={2025}
}

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.