siglip2-base-patch16-naflex

688.1K
16
license:apache-2.0
by
google
Image Model
OTHER
Good
688K downloads
Production-ready
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary

--- license: apache-2.

Code Examples

load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
load pipelinepythontransformers
from transformers import pipeline

# load pipeline
ckpt = "google/siglip2-base-patch16-naflex"
image_classifier = pipeline(model=ckpt, task="zero-shot-image-classification")

# load image and candidate labels
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
candidate_labels = ["2 cats", "a plane", "a remote"]

# run inference
outputs = image_classifier(image, candidate_labels)
print(outputs)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)
run inferencepythontransformers
import torch
from transformers import AutoModel, AutoProcessor
from transformers.image_utils import load_image

# load the model and processor
ckpt = "google/siglip2-base-patch16-naflex"
model = AutoModel.from_pretrained(ckpt, device_map="auto").eval()
processor = AutoProcessor.from_pretrained(ckpt)

# load the image
image = load_image("https://huggingface.co/datasets/merve/coco/resolve/main/val2017/000000000285.jpg")
inputs = processor(images=[image], return_tensors="pt").to(model.device)

# run infernece
with torch.no_grad():
    image_embeddings = model.get_image_features(**inputs)    

print(image_embeddings.shape)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.