embeddinggemma-300m

480.1K
1.2K
by
google
Embedding Model
OTHER
Good
480K downloads
Production-ready
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary

--- license: gemma pipeline_tag: sentence-similarity library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extractio...

Training Data Analysis

🟡 Average (4.3/10)

Researched training datasets used by embeddinggemma-300m with quality assessment

Specialized For

general
science
multilingual
reasoning

Training Datasets (3)

common crawl
🔴 2.5/10
general
science
Key Strengths
  • Scale and Accessibility: At 9.5+ petabytes, Common Crawl provides unprecedented scale for training d...
  • Diversity: The dataset captures billions of web pages across multiple domains and content types, ena...
  • Comprehensive Coverage: Despite limitations, Common Crawl attempts to represent the broader web acro...
Considerations
  • Biased Coverage: The crawling process prioritizes frequently linked domains, making content from dig...
  • Large-Scale Problematic Content: Contains significant amounts of hate speech, pornography, violent c...
wikipedia
🟡 5/10
science
multilingual
Key Strengths
  • High-Quality Content: Wikipedia articles are subject to community review, fact-checking, and citatio...
  • Multilingual Coverage: Available in 300+ languages, enabling training of models that understand and ...
  • Structured Knowledge: Articles follow consistent formatting with clear sections, allowing models to ...
Considerations
  • Language Inequality: Low-resource language editions have significantly lower quality, fewer articles...
  • Biased Coverage: Reflects biases in contributor demographics; topics related to Western culture and ...
arxiv
🟡 5.5/10
science
reasoning
Key Strengths
  • Scientific Authority: Peer-reviewed content from established repository
  • Domain-Specific: Specialized vocabulary and concepts
  • Mathematical Content: Includes complex equations and notation
Considerations
  • Specialized: Primarily technical and mathematical content
  • English-Heavy: Predominantly English-language papers

Explore our comprehensive training dataset analysis

View All Datasets

Code Examples

bash
pip install -U sentence-transformers
Download from the 🤗 Hubpython
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("google/embeddinggemma-300m")

# Run inference with queries and documents
query = "Which planet is known as the Red Planet?"
documents = [
    "Venus is often called Earth's twin because of its similar size and proximity.",
    "Mars, known for its reddish appearance, is often referred to as the Red Planet.",
    "Jupiter, the largest planet in our solar system, has a prominent red spot.",
    "Saturn, famous for its rings, is sometimes mistaken for the Red Planet."
]
query_embeddings = model.encode_query(query)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# (768,) (4, 768)

# Compute similarities to determine a ranking
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.3011, 0.6359, 0.4930, 0.4889]])

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.