Llama 3.2 3B Instruct

Downloads
Hugging Face
3.2M
7
Context
Long context
131K
License
Updated
11/3/2025
by
context-labs

Language support includes English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai. The model utilizes the transformers library and is designed for text generation. It is associated with tags such as facebook, meta, pytorch, llama, and llama-3. The license for this model is llama3.2 and it includes an extra gated prompt.

Language Model
PYTORCH

Quick Info

Released
2/22/2025
Framework
PYTORCH

Resources

Training Data Analysis

🟡 Average (4.8/10)

Researched training datasets used by Llama 3.2 3B Instruct with quality assessment

Specialized For

general
science
multilingual
reasoning

Training Datasets (4)

common crawl
🔴 2.5/10
general
science
Key Strengths
  • Scale and Accessibility: At 9.5+ petabytes, Common Crawl provides unprecedented scale for training d...
  • Diversity: The dataset captures billions of web pages across multiple domains and content types, ena...
  • Comprehensive Coverage: Despite limitations, Common Crawl attempts to represent the broader web acro...
Considerations
  • Biased Coverage: The crawling process prioritizes frequently linked domains, making content from dig...
  • Large-Scale Problematic Content: Contains significant amounts of hate speech, pornography, violent c...
c4
🔵 6/10
general
multilingual
Key Strengths
  • Scale and Accessibility: 750GB of publicly available, filtered text
  • Systematic Filtering: Documented heuristics enable reproducibility
  • Language Diversity: Despite English-only, captures diverse writing styles
Considerations
  • English-Only: Limits multilingual applications
  • Filtering Limitations: Offensive content and low-quality text remain despite filtering
wikipedia
🟡 5/10
science
multilingual
Key Strengths
  • High-Quality Content: Wikipedia articles are subject to community review, fact-checking, and citatio...
  • Multilingual Coverage: Available in 300+ languages, enabling training of models that understand and ...
  • Structured Knowledge: Articles follow consistent formatting with clear sections, allowing models to ...
Considerations
  • Language Inequality: Low-resource language editions have significantly lower quality, fewer articles...
  • Biased Coverage: Reflects biases in contributor demographics; topics related to Western culture and ...
arxiv
🟡 5.5/10
science
reasoning
Key Strengths
  • Scientific Authority: Peer-reviewed content from established repository
  • Domain-Specific: Specialized vocabulary and concepts
  • Mathematical Content: Includes complex equations and notation
Considerations
  • Specialized: Primarily technical and mathematical content
  • English-Heavy: Predominantly English-language papers

Explore our comprehensive training dataset analysis

View All Datasets