clap-htsat-fused
19.0M
40
512
Small context
—
by
laion
Embedding Model
PYTORCH
High
19.0M downloads
Battle-tested
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary
Model card for CLAP: Contrastive Language-Audio Pretraining 0.
Code Examples
Usagepythontransformers
from datasets import load_dataset
from transformers import pipeline
dataset = load_dataset("ashraq/esc50")
audio = dataset["train"]["audio"][-1]["array"]
audio_classifier = pipeline(task="zero-shot-audio-classification", model="laion/clap-htsat-fused")
output = audio_classifier(audio, candidate_labels=["Sound of a dog", "Sound of vaccum cleaner"])
print(output)
>>> [{"score": 0.999, "label": "Sound of a dog"}, {"score": 0.001, "label": "Sound of vaccum cleaner"}]Run the model:pythontransformers
from datasets import load_dataset
from transformers import ClapModel, ClapProcessor
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
audio_sample = librispeech_dummy[0]
model = ClapModel.from_pretrained("laion/clap-htsat-fused")
processor = ClapProcessor.from_pretrained("laion/clap-htsat-fused")
inputs = processor(audios=audio_sample["audio"]["array"], return_tensors="pt")
audio_embed = model.get_audio_features(**inputs)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.