roberta-base
11.3M
532
514
Small context
3 languages
—
by
FacebookAI
Language Model
PYTORCH
High
11.3M downloads
Battle-tested
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary
Pretrained model on English language using a masked language modeling (MLM) objective.
Training Data Analysis
🔵 Good (6.0/10)
Researched training datasets used by roberta-base with quality assessment
Specialized For
general
multilingual
Training Datasets (1)
c4
🔵 6/10
general
multilingual
Key Strengths
- •Scale and Accessibility: 750GB of publicly available, filtered text
- •Systematic Filtering: Documented heuristics enable reproducibility
- •Language Diversity: Despite English-only, captures diverse writing styles
Considerations
- •English-Only: Limits multilingual applications
- •Filtering Limitations: Offensive content and low-quality text remain despite filtering
Explore our comprehensive training dataset analysis
View All DatasetsCode Examples
pythontransformers
from transformers import RobertaTokenizer, RobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaModel.from_pretrained('roberta-base')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)pythontransformers
from transformers import RobertaTokenizer, TFRobertaModel
tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = TFRobertaModel.from_pretrained('roberta-base')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.