bloomz-560m

2.9M
129
45 languages
by
bigscience
Language Model
OTHER
High
2.9M downloads
Battle-tested
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary

1. Model Summary 2. Use 3. Limitations 4. Training 5. Evaluation 7. Citation > We present BLOOMZ & mT0, a family of models capable of following human instructi...

Training Data Analysis

🔴 Low Quality (3.8/10)

Researched training datasets used by bloomz-560m with quality assessment

Specialized For

general
science
multilingual

Training Datasets (2)

common crawl
🔴 2.5/10
general
science
Key Strengths
  • Scale and Accessibility: At 9.5+ petabytes, Common Crawl provides unprecedented scale for training d...
  • Diversity: The dataset captures billions of web pages across multiple domains and content types, ena...
  • Comprehensive Coverage: Despite limitations, Common Crawl attempts to represent the broader web acro...
Considerations
  • Biased Coverage: The crawling process prioritizes frequently linked domains, making content from dig...
  • Large-Scale Problematic Content: Contains significant amounts of hate speech, pornography, violent c...
wikipedia
🟡 5/10
science
multilingual
Key Strengths
  • High-Quality Content: Wikipedia articles are subject to community review, fact-checking, and citatio...
  • Multilingual Coverage: Available in 300+ languages, enabling training of models that understand and ...
  • Structured Knowledge: Articles follow consistent formatting with clear sections, allowing models to ...
Considerations
  • Language Inequality: Low-resource language editions have significantly lower quality, fewer articles...
  • Biased Coverage: Reflects biases in contributor demographics; topics related to Western culture and ...

Explore our comprehensive training dataset analysis

View All Datasets

Code Examples

How to usepythontransformers
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigscience/bloomz-560m"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint)

inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
GPUpythontransformers
# pip install -q transformers accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigscience/bloomz-560m"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")

inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.