chronos-2
4.4M
136
—
by
amazon
Other
OTHER
High
4.4M downloads
Battle-tested
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary
Update Dec 30, 2025: ☁️ Deploy Chronos-2 on Amazon SageMaker.
Code Examples
Usagetext
pip install "chronos-forecasting>=2.0"Load historical target values and past values of covariatespython
import pandas as pd # requires: pip install 'pandas[pyarrow]'
from chronos import Chronos2Pipeline
pipeline = Chronos2Pipeline.from_pretrained("amazon/chronos-2", device_map="cuda")
# Load historical target values and past values of covariates
context_df = pd.read_parquet("https://autogluon.s3.amazonaws.com/datasets/timeseries/electricity_price/train.parquet")
# (Optional) Load future values of covariates
test_df = pd.read_parquet("https://autogluon.s3.amazonaws.com/datasets/timeseries/electricity_price/test.parquet")
future_df = test_df.drop(columns="target")
# Generate predictions with covariates
pred_df = pipeline.predict_df(
context_df,
future_df=future_df,
prediction_length=24, # Number of steps to forecast
quantile_levels=[0.1, 0.5, 0.9], # Quantiles for probabilistic forecast
id_column="id", # Column identifying different time series
timestamp_column="timestamp", # Column with datetime information
target="target", # Column(s) with time series values to predict
)text
pip install -U sagemakerpython
from sagemaker.jumpstart.model import JumpStartModel
model = JumpStartModel(
model_id="pytorch-forecasting-chronos-2",
instance_type="ml.g5.2xlarge",
)
predictor = model.deploy()Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.