chronos-2

4.4M
136
by
amazon
Other
OTHER
High
4.4M downloads
Battle-tested
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary

Update Dec 30, 2025: ☁️ Deploy Chronos-2 on Amazon SageMaker.

Code Examples

Usagetext
pip install "chronos-forecasting>=2.0"
Load historical target values and past values of covariatespython
import pandas as pd  # requires: pip install 'pandas[pyarrow]'
from chronos import Chronos2Pipeline

pipeline = Chronos2Pipeline.from_pretrained("amazon/chronos-2", device_map="cuda")

# Load historical target values and past values of covariates
context_df = pd.read_parquet("https://autogluon.s3.amazonaws.com/datasets/timeseries/electricity_price/train.parquet")

# (Optional) Load future values of covariates
test_df = pd.read_parquet("https://autogluon.s3.amazonaws.com/datasets/timeseries/electricity_price/test.parquet")
future_df = test_df.drop(columns="target")

# Generate predictions with covariates
pred_df = pipeline.predict_df(
    context_df,
    future_df=future_df,
    prediction_length=24,  # Number of steps to forecast
    quantile_levels=[0.1, 0.5, 0.9],  # Quantiles for probabilistic forecast
    id_column="id",  # Column identifying different time series
    timestamp_column="timestamp",  # Column with datetime information
    target="target",  # Column(s) with time series values to predict
)
text
pip install -U sagemaker
python
from sagemaker.jumpstart.model import JumpStartModel

model = JumpStartModel(
    model_id="pytorch-forecasting-chronos-2",
    instance_type="ml.g5.2xlarge",
)
predictor = model.deploy()

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.