Flex-reddit-2x7B-1T

2.7K
5
2 languages
license:apache-2.0
by
allenai
Language Model
OTHER
7B params
New
3K downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
16GB+ RAM
Mobile
Laptop
Server
Quick Summary

AI model with specialized capabilities.

Device Compatibility

Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
7GB+ RAM

Code Examples

Usepythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

MODEL_NAME = "allenai/Flex-reddit-2x7B-1T"
TOKENIZER_NAME = "allenai/dolma2-tokenizer"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
inputs = tokenizer("Bitcoin is", return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
out = model.generate(**inputs, max_length=64)
print(tokenizer.decode(out[0]))
Usepythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

MODEL_NAME = "allenai/Flex-reddit-2x7B-1T"
TOKENIZER_NAME = "allenai/dolma2-tokenizer"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME).to(DEVICE)
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
inputs = tokenizer("Bitcoin is", return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
out = model.generate(**inputs, max_length=64)
print(tokenizer.decode(out[0]))

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.