OpenR1-Qwen-7B-Turkish
5
21
3 languages
license:apache-2.0
by
WiroAI
Language Model
OTHER
7B params
New
5 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
16GB+ RAM
Mobile
Laptop
Server
Quick Summary
This is a finetune of Qwen2.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
7GB+ RAM
Code Examples
🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]🐨 Quick startpythontransformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "OpenR1-Qwen-7B-Turkish"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "$4x+5 = 6x+7$ denklemini sağlayan $x$ değerini bul."
messages = [
{"role": "system", "content": "Lütfen adım adım düşün ve cevapla."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=4096
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.