phi-2-GGUF
41.3K
230
2.0B
2 languages
Q4
—
by
TheBloke
Language Model
OTHER
2B params
Fair
41K downloads
Community-tested
Edge AI:
Mobile
Laptop
Server
5GB+ RAM
Mobile
Laptop
Server
Quick Summary
TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z) Phi 2 - GGUF - Model creator: Microsoft - Original model: Phi 2 This re...
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
2GB+ RAM
Training Data Analysis
🟡 Average (5.2/10)
Researched training datasets used by phi-2-GGUF with quality assessment
Specialized For
code
general
science
multilingual
Training Datasets (3)
the pile
🟢 8/10
code
general
science
multilingual
Key Strengths
- •Deliberate Diversity: Explicitly curated to include diverse content types (academia, code, Q&A, book...
- •Documented Quality: Each component dataset is thoroughly documented with rationale for inclusion, en...
- •Epoch Weighting: Component datasets receive different training epochs based on perceived quality, al...
common crawl
🔴 2.5/10
general
science
Key Strengths
- •Scale and Accessibility: At 9.5+ petabytes, Common Crawl provides unprecedented scale for training d...
- •Diversity: The dataset captures billions of web pages across multiple domains and content types, ena...
- •Comprehensive Coverage: Despite limitations, Common Crawl attempts to represent the broader web acro...
Considerations
- •Biased Coverage: The crawling process prioritizes frequently linked domains, making content from dig...
- •Large-Scale Problematic Content: Contains significant amounts of hate speech, pornography, violent c...
wikipedia
🟡 5/10
science
multilingual
Key Strengths
- •High-Quality Content: Wikipedia articles are subject to community review, fact-checking, and citatio...
- •Multilingual Coverage: Available in 300+ languages, enabling training of models that understand and ...
- •Structured Knowledge: Articles follow consistent formatting with clear sections, allowing models to ...
Considerations
- •Language Inequality: Low-resource language editions have significantly lower quality, fewer articles...
- •Biased Coverage: Reflects biases in contributor demographics; topics related to Western culture and ...
Explore our comprehensive training dataset analysis
View All DatasetsCode Examples
On the command line, including multiple files at oncebash
pip3 install huggingface-hubbash
pip3 install hf_transferFirst install the packagebash
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-pythonDeploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.