xgen-small-9B-base-r
2
1 language
llama
by
Salesforce
Language Model
OTHER
9B params
New
0 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
21GB+ RAM
Mobile
Laptop
Server
Quick Summary
AI model with specialized capabilities.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
9GB+ RAM
Code Examples
Usagepythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Salesforce/xgen-small-9B-base-r"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto"
).to(device)
prompt = "What is Salesforce?"
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=False,
truncation=True
).to(device)
generated = model.generate(**inputs, max_new_tokens=32)
output = tokenizer.decode(
generated[0],
skip_special_tokens=True,
)
print(output)Usagepythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Salesforce/xgen-small-9B-base-r"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto"
).to(device)
prompt = "What is Salesforce?"
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=False,
truncation=True
).to(device)
generated = model.generate(**inputs, max_new_tokens=32)
output = tokenizer.decode(
generated[0],
skip_special_tokens=True,
)
print(output)Usagepythontransformers
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Salesforce/xgen-small-9B-base-r"
tokenizer = AutoTokenizer.from_pretrained(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto"
).to(device)
prompt = "What is Salesforce?"
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=False,
truncation=True
).to(device)
generated = model.generate(**inputs, max_new_tokens=32)
output = tokenizer.decode(
generated[0],
skip_special_tokens=True,
)
print(output)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.