SweRankEmbed-Small

1.1K
4
license:cc-by-nc-4.0
by
Salesforce
Code Model
OTHER
New
1K downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
Unknown
Mobile
Laptop
Server
Quick Summary

AI model with specialized capabilities.

Code Examples

Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Sentence-Transformerspython
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("Salesforce/SweRankEmbed-Small", trust_remote_code=True)
queries = ['Calculate the n-th factorial']
documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']

query_embeddings = model.encode(queries, prompt_name="query")
document_embeddings = model.encode(documents)

scores = query_embeddings @ document_embeddings.T

for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    # Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)
Usage with Huggingface Transformerspythontransformers
import torch
from transformers import AutoModel, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('Salesforce/SweRankEmbed-Small')
model = AutoModel.from_pretrained('Salesforce/SweRankEmbed-Small', add_pooling_layer=False)
model.eval()

query_prefix = 'Represent this query for searching relevant code: '
queries  = ['Calculate the n-th factorial']
queries_with_prefix = ["{}{}".format(query_prefix, i) for i in queries]
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)

documents = ['def fact(n):\n if n < 0:\n  raise ValueError\n return 1 if n == 0 else n * fact(n - 1)']
document_tokens =  tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)

# Compute token embeddings
with torch.no_grad():
    query_embeddings = model(**query_tokens)[0][:, 0]
    document_embeddings = model(**document_tokens)[0][:, 0]


# normalize embeddings
query_embeddings = torch.nn.functional.normalize(query_embeddings, p=2, dim=1)
document_embeddings = torch.nn.functional.normalize(document_embeddings, p=2, dim=1)

scores = torch.mm(query_embeddings, document_embeddings.transpose(0, 1))
for query, query_scores in zip(queries, scores):
    doc_score_pairs = list(zip(documents, query_scores))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    #Output passages & scores
    print("Query:", query)
    for document, score in doc_score_pairs:
        print(score, document)

Deploy This Model

Production-ready deployment in minutes

Together.ai

Instant API access to this model

Fastest API

Production-ready inference API. Start free, scale to millions.

Try Free API

Replicate

One-click model deployment

Easiest Setup

Run models in the cloud with simple API. No DevOps required.

Deploy Now

Disclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.