Qwen3-Reranker-8B
31.2K
192
8.0B
license:apache-2.0
by
Qwen
Language Model
OTHER
8B params
Fair
31K downloads
Community-tested
Edge AI:
Mobile
Laptop
Server
18GB+ RAM
Mobile
Laptop
Server
Quick Summary
The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
8GB+ RAM
Code Examples
Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Usagepythontransformers
# Requires transformers>=4.51.0
import torch
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
def format_instruction(instruction, query, doc):
if instruction is None:
instruction = 'Given a web search query, retrieve relevant passages that answer the query'
output = "<Instruct>: {instruction}\n<Query>: {query}\n<Document>: {doc}".format(instruction=instruction,query=query, doc=doc)
return output
def process_inputs(pairs):
inputs = tokenizer(
pairs, padding=False, truncation='longest_first',
return_attention_mask=False, max_length=max_length - len(prefix_tokens) - len(suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = prefix_tokens + ele + suffix_tokens
inputs = tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=max_length)
for key in inputs:
inputs[key] = inputs[key].to(model.device)
return inputs
@torch.no_grad()
def compute_logits(inputs, **kwargs):
batch_scores = model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, token_true_id]
false_vector = batch_scores[:, token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = torch.nn.functional.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-Reranker-8B", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B").eval()
# We recommend enabling flash_attention_2 for better acceleration and memory saving.
# model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3-Reranker-8B", torch_dtype=torch.float16, attn_implementation="flash_attention_2").cuda().eval()
token_false_id = tokenizer.convert_tokens_to_ids("no")
token_true_id = tokenizer.convert_tokens_to_ids("yes")
max_length = 8192
prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
prefix_tokens = tokenizer.encode(prefix, add_special_tokens=False)
suffix_tokens = tokenizer.encode(suffix, add_special_tokens=False)
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = ["What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
pairs = [format_instruction(task, query, doc) for query, doc in zip(queries, documents)]
# Tokenize the input texts
inputs = process_inputs(pairs)
scores = compute_logits(inputs)
print("scores: ", scores)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.