Qwen3-4B-MLX-4bit
76.9K
16
66K
Extended context
4.0B
1 language
license:apache-2.0
by
Qwen
Language Model
OTHER
4B params
Fair
77K downloads
Community-tested
Edge AI:
Mobile
Laptop
Server
9GB+ RAM
Mobile
Laptop
Server
Quick Summary
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
4GB+ RAM
Code Examples
bash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmpython
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-4B-MLX-4bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-4B-MLX-4bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-4B-MLX-4bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-4B-MLX-4bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-4B-MLX-4bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-4B-MLX-4bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-4B-MLX-4bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-4B-MLX-4bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.