Qwen3-1.7B-MLX-6bit
136
2
1.7B
1 language
license:apache-2.0
by
Qwen
Language Model
OTHER
1.7B params
New
136 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
4GB+ RAM
Mobile
Laptop
Server
Quick Summary
Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
2GB+ RAM
Training Data Analysis
🔵 Good (6.0/10)
Researched training datasets used by Qwen3-1.7B-MLX-6bit with quality assessment
Specialized For
general
multilingual
Training Datasets (1)
c4
🔵 6/10
general
multilingual
Key Strengths
- •Scale and Accessibility: 750GB of publicly available, filtered text
- •Systematic Filtering: Documented heuristics enable reproducibility
- •Language Diversity: Despite English-only, captures diverse writing styles
Considerations
- •English-Only: Limits multilingual applications
- •Filtering Limitations: Offensive content and low-quality text remain despite filtering
Explore our comprehensive training dataset analysis
View All DatasetsCode Examples
bash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmbash
pip install --upgrade transformers mlx_lmpython
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)python
from mlx_lm import load, generate
model, tokenizer = load("Qwen/Qwen3-1.7B-MLX-6bit")
prompt = "Hello, please introduce yourself and tell me what you can do."
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True
)
response = generate(
model,
tokenizer,
prompt=prompt,
verbose=True,
max_tokens=1024
)
print(response)Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.