Mono-InternVL-2B-S1-2
69
1
2.0B
2 languages
license:mit
by
OpenGVLab
Image Model
OTHER
2B params
New
69 downloads
Early-stage
Edge AI:
Mobile
Laptop
Server
5GB+ RAM
Mobile
Laptop
Server
Quick Summary
AI model with specialized capabilities.
Device Compatibility
Mobile
4-6GB RAM
Laptop
16GB RAM
Server
GPU
Minimum Recommended
2GB+ RAM
Code Examples
python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)python
from lmdeploy import pipeline
from lmdeploy.vl import load_image
image = load_image('./examples/image1.jpg')
pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
response = pipe(('Please describe the image shortly.', image))
print(response.text)bash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
git clone https://github.com/OpenGVLab/Mono-InternVL.gitbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
conda create -n monointernvl python=3.9 -y
conda activate monointernvlbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install -r requirements.txtbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
pip install flash-attn==2.5.6 --no-build-isolationbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installbash
git clone https://github.com/Dao-AILab/flash-attention.git
cd flash-attention
git checkout v2.5.6
python setup.py installLLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/LLaVA-v1.5-mix665k Datasetbash
mkdir playground
wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1pip install -U huggingface_hubbash
mkdir workdirs
cd workdirs/
# pip install -U huggingface_hub
huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1Deploy This Model
Production-ready deployment in minutes
Together.ai
Instant API access to this model
Production-ready inference API. Start free, scale to millions.
Try Free APIReplicate
One-click model deployment
Run models in the cloud with simple API. No DevOps required.
Deploy NowDisclosure: We may earn a commission from these partners. This helps keep LLMYourWay free.